

LAB MANUAL

ON

(INTERNET OF THINGS)

ESTABLISHMENT OF ADVANCED LABORATORY FOR CYBER

SECURITY TRAINING TO TECHNICAL TEACHERS

DEPARTMENT OF INFORMATION MANAGEMENT AND EMERGING

ENGINEERING

 MINISTRY OF ELECTRONICS AND INFORMATION TECHNOLOGY

GOVERNMENT OF INDIA

Principal Investigator: Prof. Maitreyee Dutta

Co Investigator: Prof. Shyam Sundar Pattnaik

PREPARED BY:

Prof. Maitreyee Dutta and Ms. Nitika Khurana (MSA)

Table of Contents

Internet of Things (IOT) ... 3

Characteristics of the IOT ... 3

Communications in IoT ... 4

Arduino in IoT ... 5

Arduino Uno .. 6

Features of the Arduino ... 6

Arduino IDE .. 8

(Integrated Development Environment) ... 8

Installation of Arduino Software (IDE) .. 9

Practical 1 ...16

Controlling the Light Emitting Diode (LED) with a push button. 16

Practical 2 ...21

Interfacing the RGB LED with the Arduino 21

Practical 3 ...25

Controlling the LED blink rate with the potentiometer interfacing with

Arduino .. 25

Practical 4 ...28

Detection of the light using photo resistor .. 28

Practical 5 ...32

Interfacing of temperature sensor LM35 with Arduino 32

Practical 6 ...36

Interfacing Servo Motor with the Arduino ... 36

Practical 7 ...41

Interfacing of the Active Buzzer with Arduino. 41

Practical 8 ...46

Interfacing of the Relay with Arduino. ... 46

Practical 9 ...49

Building Intrusion Detection System with Arduino and Ultrasonic

Sensor .. 49

Practical 10 .. 55

Directional Control of the DC motor using Arduino 55

Internet of Things (IOT)

Introduction: IOT stands for “Internet of Things”. The IOT is a name for

the vast collection of “things” that are being networked together in the home

and workplace (up to 20 billion by 2020 according to Gardner, a technology

consulting firm).

Characteristics of the IOT

These IOT devices talk to one another (M2M
communication) or to servers located in the
local network or on the Internet. Being on the
network allows the device the common ability
to consume and produce data.

Networking

IOT devices sense something about their
environment.

Sensing

IOT devices that do something. Lock doors,
beep, turn lights on, or turn the TV on

Actuators

Communications in IoT

Communications are important to IOT projects. In fact, communications are

core to the whole genre. There is a trade-off for IOT devices. The more

complex the protocols and higher the data rates, the more powerful processor

needed and the more electrical power the IOT device will consume.

TCP/IP base communications (think web servers; HTTP-based commutation

(like REST servers); streams of data; UDP) provide the most flexibility and

functionality at a cost of processor and electrical power.

Low-power Bluetooth and Zigbee types of connections allow much lower

power for connections with the corresponding decrease in bandwidth and

functionality. IOT projects can be all over the map with requirements for

communication flexibility and data bandwidth requirements.

Arduino in IoT

In IoT applications the Arduino is used to collect the data from the

sensors/devices to send it to the internet and receives data for purpose of

control of actuators.

Arduino Uno

Introduction: The Arduino Uno is an open-source microcontroller board

based on the Microchip ATmega328P microcontroller and developed by

Arduino.cc. The board is equipped with sets of digital and analog input/output

(I/O) pins that may be interfaced to various expansion boards (shields) and

other circuits. The board has 14 digital I/O pins (six capable of PWM output),

6 analog I/O pins, and is programmable with the Arduino IDE (Integrated

Development Environment), via a type B USB cable. It can be powered by the

USB cable or by an external 9-volt battery, though it accepts voltages between

7 and 20 volts. The word "uno" means "one" in Italian and was chosen to mark

the initial release of Arduino Software.

Features of the Arduino

1. Arduino boards are able to read analog or digital input signals from different

sensors and turn it into an output such as activating a motor, turning LED

on/off, connect to the cloud and many other actions.

2. The board functions can be controlled by sending a set of instructions to the

microcontroller on the board via Arduino IDE.

3. Arduino IDE uses a simplified version of C++, making it easier to learn to

program.

4. Arduino provides a standard form factor that breaks the functions of the micro-

controller into a more accessible package.

Arduino IDE

(Integrated Development

Environment)

Introduction: The Arduino Software (IDE) is easy-to-use and is based

on the Processing programming environment. The Arduino Integrated

Development Environment (IDE) is a cross-platform application (for

Windows, macOS, Linux) that is written in functions from C and C++.

The open-source Arduino Software (IDE) makes it easy to write code

and upload it to the board. This software can be used with any Arduino

board.

The Arduino Software (IDE) – contains:

• A text editor for writing code

• A message area

• A text consoles

• A toolbar with buttons for common functions and a series of menus.

It connects to the Arduino hardware to upload programs and

communicate with them.

Installation of Arduino Software (IDE)

Step1: Downloading

➢ To install the Arduino software, download this page:

http://arduino.cc/en/Main/Software and proceed with the installation by

allowing the driver installation process.

Step 2: Directory Installation

➢ Choose the installation directory.

http://arduino.cc/en/Main/Software

Step 3: Extraction of Files

➢ The process will extract and install all the required files to execute properly

the Arduino Software (IDE)

Step 4: Connecting the board

➢ The USB connection with the PC is necessary to program the board and

not just to power it up. The Uno and Mega automatically draw power from

either the USB or an external power supply. Connect the board to the

computer using the USB cable. The green power LED (labelled PWR)

should go on.

Step 5: Working on the new project

➢ Open the Arduino IDE software on your computer. Coding in the Arduino

language will control your circuit.

➢ Open a new sketch File by clicking on New.

Step 6: Working on an existing project

➢ To open an existing project example, select File → Example → Basics →

Blink.

Step 7: Select your Arduino board.

➢ To avoid any error while uploading your program to the board, you must select the

correct Arduino board name, which matches with the board connected to your

computer.

➢ Go to Tools → Board and select your board.

Step 8: Select your serial port

➢ Select the serial device of the Arduino board.

➢ Go to Tools → Serial Port menu. This is likely to be COM3 or higher (COM1

and COM2 are usually reserved for hardware serial ports).

➢ To find out, you can disconnect your Arduino board and re-open the menu,

the entry that disappears should be of the Arduino board. Reconnect the board

and select that serial port.

Step 9: Upload the program to your board.

➢ Click the "Upload" button in the environment.

➢ Wait a few seconds; you will see the RX and TX LEDs on the board, flashing.

➢ If the upload is successful, the message "Done uploading" will appear in the

status bar.

A Verify

B Upload

C New

D Open

E Save

F Serial Motor

Practical 1

Controlling the Light Emitting Diode (LED)

with a push button.

Introduction: Push-button is a very simple mechanism which is used to

control electronic signal either by blocking it or allowing it to pass. This

happens when mechanical pressure is applied to connect two points of the

switch together. Push buttons or switches connect two points in a circuit when

pressed. When the push-button is released, there is no connection between the

two legs of the push-button. Here it turns on the built-in LED on pin 11 when

the button is pressed. The LED stays ON as long as the button is being pressed.

LED Specifications

Pin definition

Long pin +5V

Short pin GND

Push Button

Specifications:

Size 6 x 6 x 5mm

Temperature -30 ~ +70 Centigrade

Hardware Required:

Component Name Quantity

Arduino UNO 1

LED 1

Push Button 1

220Ω resistor 1

10KΩ resistor 1

USB Cable 1

Breadboard 1

Jumper wires Several

Connection Diagram:

Steps of working

1. Insert the push button into your breadboard and connect it to the digital

pin 7(D7) which act as INPUT.

2. Insert the LED into the breadboard. Attach the positive leg (the longer

leg) to digital pin 11 of the Arduino Uno, and the negative leg via the

220-ohm resistor to GND. The pin D11 is taken as OUTPUT.

3. The 10kΩ resistor used as PULL-UP resistor and 220 Ω resistors is used

to limit the current through the LED.

4. Upload the code as given below.

5. Press the push-button to control the ON state of LED.

The Sketch

➢ This sketch works by setting pin D7 as for the push button as INPUT

and pin 11 as an OUTPUT to power the LED.

➢ The initial state of the button is set to OFF.

➢ After that the run a loop that continually reads the state from the

pushbutton and sends that value as voltage to the LED. The LED will

be ON accordingly.

/****************Pressing Button LED*****/

const int buttonPin = 7; // choose the pin for the pushbutton

const int ledPin = 11; // choose the pin for a LED

int buttonState = 0; // variable for reading the pushbutton pin status

void setup()

{

 pinMode(ledPin, OUTPUT); // declare LED as output

 pinMode(buttonPin, INPUT); // declare pushbutton as input

}

void loop()

{

 buttonState = digitalRead(button Pin); // read input value

 if (buttonState == HIGH)

{ // check if the input is HIGH (button pressed)

 digitalWrite(ledPin, HIGH); // turn LED ON

 }

else

 {

 digitalWrite(ledPin, LOW); // turn LED OFF}}

Observation Table:

Sr no. Push button State LED State

1

2

Precautions:

1. The pushbutton is square so it is important to set it appropriately on

breadboard.

2. While making the connections make sure to use a pull-down resistor

because directly connecting two points of a switch to the circuit will

leave the input pin in floating condition and circuit may not work

according to the program.

3. It is very important to set pinMode() as OUTPUT first before using

digitalWrite() function on that pin.

4. If you do not set the pinMode() to OUTPUT, and connect an LED to a

pin, when calling digitalWrite(HIGH), the LED may appear dim.

Practical 2

Interfacing the RGB LED with the Arduino

Introduction: There are actually two types of RGB LED’s; the common

cathode one and the common anode one. In the common cathode RGB led, the

cathode of all the LED’s is common and we give PWM signals to the anode

of LED’s while in the common anode RGB led, the anode of all the LED’s is

common and we give PWM signals to the cathode of LED’s. Inside the RGB

led, there are three more LED’s. So, by changing the brightness of these

LED’s, we can obtain many other colors. To change brightness of RGB led,

we can use the PWM pins of Arduino. The PWM pins will give signal different

duty cycles to the RGB led to obtain different colors.

Hardware Required:

Component Name Quantity

Arduino UNO 1

RGB LED 1

220Ω/330Ω resistor 3

USB Cable 1

Breadboard 1

Jumper wires several

Connection Diagram:

Steps of working

1. Insert the RGB LED into your breadboard and connect its cathode pin

to the GND of the Arduino.

2. Insert the LED into the breadboard. Attach Red pin to pin 8, Green pin

to pin 9 and Blue pin to pin 10 of the Arduino via the 220-ohm resistor,

and the negative leg to GND.

3. Upload the code as given below.

4. Observe the changes in the color of the RGB LED.

The Sketch

This sketch works by setting pinsD8, D9, D10 as for the different legs of RGB

LED. After that the run a loop that continually reads the value from the pins

and sends that value as voltage to the LED. The voltage value is between 0–5

volts, and the blinking of the LED will vary accordingly.

/************RGB LED Blink*******/

void setup() {

 // put your setup code here, to run once:

pinMode(8,OUTPUT);

pinMode(9,OUTPUT);

pinMode(10,OUTPUT);

}

void loop() {

 // put your main code here, to run repeatedly:

digitalWrite (8,HIGH);

digitalWrite (10,LOW);

delay(1000);

digitalWrite (9,HIGH);

digitalWrite (8,LOW);

delay(1000);

digitalWrite (10,HIGH);

digitalWrite (9,LOW);

delay(1000);

}

Observations:

Sr. No. Time(ms) Color of LED

1

2

3

Practical 3

Controlling the LED blink rate with the

potentiometer interfacing with Arduino

Introduction: A potentiometer is a variable resistor with a knob that allows

altering the resistance of the potentiometer. The potentiometer manipulates a

continuous analog signal, which represents physical measurements. The

potentiometer is used with Arduino to control the blink rate of the LED. The

potentiometer is an adjustable resistor, and its operating principle is shown in

the following figure:

Hardware Required:

Component Quantity

Arduino Uno 1

Bread board 1

220Ω current limiting resistor 1

javascript:openLightBox('0962df3be2',%200);

5mm LED 1

10KΩ Potentiometer 1

Jumper Wires Several

Supporting USB data cable 1

Working Diagram:

Steps of working

1. Insert the potentiometer into your breadboard and connect its center pin

to the analog pin A2 and the remaining pin to GND on the breadboard.

2. Insert the LED into the breadboard. Attach the positive leg (the longer

leg) to pin 13 of the Arduino via the 220-ohm resistor, and the negative

leg to GND.

3. Upload the code as given below.

4. Turn the potentiometer to control the brightness of the LED and move

the position of pin 2 by rotating the knob, changing the resistance value

from pin 2 to both ends.

5. Observe the changes in the blinking rate of the LED.

The Sketch

This sketch works by setting pin A2 as for the potentiometer and pin 9 as an

OUTPUT to power the LED. After that the run a loop that continually reads

the value from the potentiometer and sends that value as voltage to the LED.

The voltage value is between 0–5 volts, and the brightness of the LED will

vary accordingly.

Observation Table:

Sr. no. Voltage Light Intensity

1

2

3

4

5

Practical 4

Detection of the light using photo resistor

Introduction: A photo resistor or photocell is a light-controlled variable

resistor made of a high resistance semiconductor. The resistance of a photo

resistor decreases with increasing incident light intensity. A photo resistor can

be applied in light-sensitive detector circuits, and light- and dark-activated

switching circuits. It's also called light-dependent resistor (LDR).

Hardware Required:

Component Name Quantity

Arduino UNO 1

LED 1

Photo Resistor 1

10KΩ Resistor 1

220Ω Resistor 1

USB Cable 1

Breadboard 1

Jumper wires several

 Connection diagram:

Steps of working

1. Insert the photo resistor into your breadboard and connect its pin to the

analog pin A0 and the remaining pin to supply on the breadboard.

2. Insert the LED into the breadboard. Attach the positive leg (the longer

leg) to pin 9 of the Arduino via the 220-ohm resistor, and the negative

leg to GND.

3. Insert the 10K-ohm resistor

4. Upload the code

5. Turn the photo resistor to ON the LED

6. Observe the changes in the state of the LED.

The Sketch

This sketch works by setting pin A0 as for the photo sensor and pin 9 as an

OUTPUT to power the LED. After that the run a loop that continually reads

the value from the photo resistor and sends that value as voltage to the LED.

The LED will vary accordingly.

/****************Photo Resistor to LED*****/

const int sensorPin = A0; // choose the pin for the Photo resistor

const int ledPin = 9; // choose the pin for a LED

int lightCal; // variable for reading the initial state of photo sensor

int lightVal; // variable for reading the current state photo sensor

void setup()

 {

pinMode(ledPin, OUTPUT); // declare LED as output

lightCal = analogRead(sensorPin);

}

void loop() {

lightVal =analogRead(sensorPin); // read input value

if(lightVal < lightCal-50) { // check if the input is less than threshold

digitalWrite(9,HIGH); // turn LED ON}

else { digitalWrite(9, LOW); // turn LED OFF

 }

}

Observation Table:

Sr. no. Light detected LED state

1

2

Practical 5

Interfacing of temperature sensor LM35

with Arduino

Introduction: The LM35 series are precision integrated-circuit temperature

devices with an output voltage linearly proportional to the Centigrade

temperature. LM35 is three terminal linear temperature sensors from National

semiconductors. It can measure temperature from -55 degree Celsius to +150

degree Celsius. The voltage output of the LM35 increases 10mV per degree

Celsius rise in temperature. LM35 can be operated from a 5V supply and the

stand by current is less than 60uA. The pin out of LM35 is shown in the figure

below.

Hardware Required:

Component Name Quantity

Arduino UNO 1

Lm35 1

USB Cable 1

Breadboard 1

Jumper wires Several

Connection Diagram:

Steps of working

1. Insert the temperature sensor into your breadboard and connect its pin1

to the supply.

2. Connect its center pin to the analog pin A0 and the remaining pin3 to

GND on the breadboard.

3. Upload the code as given below.

4. Vary the temperature and read the voltage changes.

5. Open the Arduino IDE’s serial monitor to see the results.

The Sketch

This sketch works by setting pin A0 as for the temperature sensor. After that

the run a loop that continually reads the value from the sensor and sends that

value as voltage. The voltage value is between 0–5 volts, when temperature

will vary accordingly.

/*************File name: LM 35 Temperature Sensor.ino Description: Lit

LM35 Temperature Sensor, let Precision Temperature sensor***/

int LM35Pin=A0;

void setup()

{

Serial.begin(9600);}

void loop ()

{int val;

int data;

val = analogRead(LM35Pin);

data= (val*5)/10;

Serial.print(“Temp:”);

Serial.print(data);

Serial.println(“C”);

delay(500);

}

Observation Table:

Sr.

no.

Voltage Temperature

1

2

3

4

5

Practical 6

Interfacing Servo Motor with the Arduino

Introduction:

A Servo Motor is a small device that has an output shaft. This shaft can be

positioned to specific angular positions by sending the servo a coded signal.

As long as the coded signal exists on the input line, the servo will maintain

the angular position of the shaft. If the coded signal changes, the angular

position of the shaft changes. Servo motors have three terminals – power,

ground, and signal. The power wire is typically red, and should be connected

to the 5V pin on the Arduino. The ground wire is typically black or brown as

shown in figure:

Specifications:

GND common ground for both the motor and logic.

5V positive voltage that powers the servo.

Control Input for the control system.

The control wire is used to communicate the angle. The angle is determined

by the duration of a pulse that is applied to the control wire. This is called

Pulse Coded Modulation. The servo expects to see a pulse every 20

milliseconds (.02 seconds). The length of the pulse will determine how far the

motor turns. A 1.5 millisecond pulse, for example, will make the motor turn

to the 90-degree position (often called as the neutral position). If the pulse is

shorter than 1.5 milliseconds, then the motor will turn the shaft closer to 0

degrees. If the pulse is longer than 1.5 milliseconds, the shaft turns closer to

180 degrees.

Hardware Required:

Component Name Quantity

Arduino UNO 1

Servo motor 1

USB Cable 1

Breadboard 1

Jumper wires several

Connection Diagram:

Steps of working

1. The servo motor has a female connector with three pins. The darkest or

even black one is usually the ground. Connect this to the Arduino GND.

2. Connect the power cable that in all standards should be red to 5V on

the Arduino.

3. Connect the remaining line on the servo connector to a digital pin on

the Arduino.

4. Upload the code

5. Observe the position of the shaft.

The Sketch

This sketch works by setting pin D9 as for the control of servo motor. After

that the run a loop that continually increment the value of the index of rotation

angle and sends that value as voltage to the D9. The voltage value is between

0–5 volts, and the rotation angle of the servo motor will vary accordingly.

/******** Servo Motor Rotation******/

#include<Servo.h>

Servo myservo;

int pos=0;

void setup()

{

 // put your setup code here, to run once:

myservo.attach(7);}

void loop() {

 // put your main code here, to run repeatedly:

 for(pos=0;pos<=180;pos++)

 {

myservo.write(pos);

delay (15);

}

 delay (1000);

for (pos=180; pos>=0;pos--)

{

myservo.write (pos);

delay (15);

}

delay(1000);

}

Observation Table:

Sr. no. Voltage Position of Shaft

1

2

3

4

5

Practical 7

Interfacing of the Active Buzzer with

Arduino.

Introduction:

A piezo buzzer is a type of electronic device that’s used to produce beeps and

tones. The working principle of the device is piezoelectric effect. The main

component of this device is a piezo crystal, which is a special material that

changes shape when a voltage applied to it. The active buzzer will only

generate sound when it will be electrified. It generates sound at only one

frequency. This buzzer operates at an audible frequency of about 2 KHz.

Specifications:

Specification Range

VoltageRange 3.3-5V

Frequency 2KHz

Pin Name Description

Positive Identified by (+) symbol or longer terminal

lead. Can be powered by 6V DC

Negative Identified by short terminal lead. Typically

connected to the ground of the circuit

Hardware Required:

Component Name Quantity

Arduino UNO 1

Buzzer / piezo

speaker

1

220-ohm resistors 1

USB Cable 1

Breadboard 1

Jumper wires several

Connection Diagram:

Steps of working:

Connect the Supply wire (RED) of the buzzer to the Digital Pin 9 of the

Arduino through a 100-ohm resistor.

Connect the Ground wire (BLACK) of the buzzer to any Ground Pin on the

Arduino.

Upload the code

Observe the changes in the pitch and volume of the buzzer.

Sketch:

This sketch works by setting pin D9 as for the control the buzzer. After that

the run a loop that continually sends that value as voltage high or low to the

D9 using the function digitalWrite(). The voltage value and the tone

generated from the buzzer will vary accordingly.

/****Musical buzzer****/

int buzzer = 9; //the pin of the active buzzer

void setup()

{

pinMode (buzzer,OUTPUT); //initialize the buzzer pin as an output

}

void loop(){

unsigned char i;

while(1){

//output a frequency

for(i=0;i<80;i++)

{

digitalWrite(buzzer,HIGH);

delay(1); //wait for 1ms

digitalWrite(buzzer,LOW);

delay(1); //wait for 1ms

}

//output another frequency

for(i=0;i<100;i++){

digitalWrite(buzzer,HIGH);

delay(2); //wait for 2ms

digitalWrite(buzzer,LOW);

delay(2); //wait for 2ms

}

}

}

Observation:

Sr. no. Change the value Frequency of tone

1

2

3

Practical 8

Interfacing of the Relay with Arduino.

Introduction:

Relay is an electromagnetic switch, which is controlled by small current, and

used to switch ON and OFF relatively much larger current. Means by applying

small current we can switch ON the relay which allows much larger current

to flow.

Hardware Required:

Component Name Quantity

Arduino UNO 1

5V Relay 1

USB Cable 1

Breadboard 1

Jumper wires several

Connection Diagram:

Steps of working:

1. The relay module connected with three pins. We will connect the relay

module with Arduino in the normally open state. The black one of relay

is usually the ground. Connect this to the Arduino GND.

2. Connect the red wire of relay module to 5V of the Arduino.

3. Connect the signal pin of relay module to a digital pin 6 of the Arduino.

4. Upload the code

5. Observe the clicking sound of the relay that states the ON and OFF

constantly.

Sketch:

This sketch works by setting 5V supply pin of Arduino as for the control of

relay module. After that the run a loop that continually sends that value as

voltage to the D6 with the delay given.

// Arduino Relay Control Code

Int relayPin=6;

#define interval 2000

void setup() {

 pinMode(relayPin, OUTPUT);

}

void loop()

{

 digitalWrite(relayPin, HIGH);

 delay(interval);

 digitalWrite(relayPin, LOW);

 delay(interval);

}

Observations:

Sr. No. Delay Relay Status

1

2

Practical 9

Building Intrusion Detection System with

Arduino and Ultrasonic Sensor

Introduction:

An intrusion detection system (IDS) is a device or software application that

monitors a network or systems for malicious activity

Ultrasonic Sensors: The HC-SR04 ultrasonic sensor uses SONAR to

determine the distance of an object just like the bats do. It offers excellent

non-contact range detection with high accuracy and stable readings in an easy-

to-use package from 2 cm to 400 cm or 1” to 13 feet. It comes complete with

ultrasonic transmitter and receiver module. The ultrasonic sensor uses the

reflection of sound in obtaining the time between the wave sent and the wave

received. It usually sent a wave at the transmission terminal and receives the

reflected waves. The time taken is used together with the normal speed of

sound in air (340ms-1) to determine the distance between the sensor and the

obstacle. The Ultrasonic sensor is used here for the intruder detection. The

sound via a buzzer occurs when an object comes near to the sensor. The

distance to which the sensor will respond can be easily adjusted in the

program.

Hardware Required:

Component Name Quantity

Arduino UNO 1

Red LED 1

Green LED 1

HC-SR04 Ultrasonic

Sensor

1

Buzzer 1

USB Cable 1

Breadboard 1

Jumper wires several

Connection Diagram:

Steps of working

1. Insert the Ultrasonic sensor into your breadboard and connect its Echo

pin to the digital pin 2 and the Trigger pin to digital pin 3 of the

Arduino.

2. Insert the RED and Green LED into the breadboard. Attach the positive

leg (the longer leg) of red LED to signal pin of the Buzzer via the 220-

ohm resistor, and the negative leg to GND. The green LED is connected

to digital pin 8 of the Arduino.

3. Upload the code.

4. Observe the LEDs and take some object in front of ultrasonic sensor.

5. Observe the changes in the LED and buzzer sound.

The Sketch

This sketch works by setting pin 2 as for the ultrasonic sensors and pin 8, pin9

& pin 10 as an OUTPUT to power the LEDs and buzzer. After that the run a

loop that continually reads the value from the echo pin and sends that value

as voltage to the LEDs. The color of the LED which glows will vary

accordingly to the detection of object in the given range.

/**********Intrusion Detection******/

#define echo 2

 #define trig 3

 #define outA 8 // Red LED

 #define outB 9 // Green LED

 #define outC 10 // Buzzer

 float duration; // time taken by the pulse to return back

 float distance; // one way distance travelled by the pulse

 const int intruderDistance = 10; // the minimum distance up to which the

sensor is able to sense any object

 void setup() {

 pinMode(trig, OUTPUT);

 pinMode(echo, INPUT);

 pinMode(outA, OUTPUT);

 digitalWrite(outA, LOW);

 pinMode(outB, OUTPUT);

 digitalWrite(outB, LOW);

pinMode(outC, OUTPUT);

 digitalWrite(outC, LOW);

 Serial.begin(9600);

 }

 void loop() {

 time_Measurement();

 distance = (float)duration * (0.0343) / 2;

 // calculate the one way distance travelled by the pulse

 Serial.println(distance);

 alarm_condition();

 }

 void time_Measurement()

 { // function to measure the time taken by the pulse to return back

 digitalWrite(trig, LOW);

 delayMicroseconds(2);

 digitalWrite(trig, HIGH);

 delayMicroseconds(10);

 digitalWrite(trig, LOW);

 duration = pulseIn(echo, HIGH);

 }

 void alarm_condition()

 { //function to execute the output commands based on the sensor

input

 if(distance<=intruderDistance)

 {

 digitalWrite(outA,HIGH);

 digitalWrite(outB,LOW);

 analogWrite(outC,200);}

 else

 {

 digitalWrite(outA,LOW);

 digitalWrite (outB, HIGH);

 analogWrite (outC,0);

 }

 }

Observation Table:

Sr no. Object Detected LED Buzzer

1

2

Practical 10

Directional Control of the DC motor using

Arduino

Introduction:

A DC motor (Direct Current motor) is the most common type of motor. DC

motors normally have just two leads, one positive and one negative. If you

connect these two leads directly to a battery, the motor will rotate. If you

switch the leads, the motor will rotate in the opposite direction.

Specification

Pin Description

GND common ground for both the motor and logic

5V positive voltage that powers the servo

Control Input for the control system.

The control wire is used to communicate the angle. The angle is determined

by the duration of a pulse that is applied to the control wire. This is called

Pulse Coded Modulation. The servo expects to see a pulse every 20

milliseconds (.02 seconds). The length of the pulse will determine how far the

motor turns. A 1.5 millisecond pulse, for example, will make the motor turn

to the 90-degree position (often called as the neutral position). If the pulse is

shorter than 1.5 milliseconds, then the motor will turn the shaft closer to 0

degrees. If the pulse is longer than 1.5 milliseconds, the shaft turns closer to

180 degrees.

Hardware Required:

Component Name Quantity

Arduino UNO 1

DC motor 1

RGB LED 1

Push button 1

10k-ohm resistor 1

USB Cable 1

Breadboard 1

Jumper wires several

Connection diagram:

Steps of working

1. The servo motor has a female connector with three pins. The darkest or

even black one is usually the ground. Connect this to the Arduino GND.

2. Connect the power cable that in all standards should be red to 5V on

the Arduino.

3. Connect the remaining line on the servo connector to a digital pin on

the Arduino.

4. Upload the code

5. Observe the position of the shaft.

The Sketch

This sketch works by setting pin A2 as for the potentiometer and pin 9 as an

OUTPUT to power the LED. After that the run a loop that continually reads

the value from the potentiometer and sends that value as voltage to the LED.

The voltage value is between 0–5 volts, and the brightness of the LED will

vary accordingly.

/******** DC Motor Direction control by RGB******/

const int inputPin=1;

const int blue=3;

const int red=4;

const int motorPin1=5,motorPin2=6;

int dir=LOW;

int prevState=0,currentState=0;

void setup()

{

// put your setup code here, to run once:

pinMode(inputPin,INPUT);

pinMode(motorPin1,OUTPUT);

pinMode(motorPin2,OUTPUT);

pinMode(blue,OUTPUT);

pinMode(red,OUTPUT);

}

void loop()

{

// put your main code here, to run repeatedly:

currentState=digitalRead(inputPin);

if(currentState!=prevState)

{

 if(currentState==HIGH)

 { dir=!dir;

 }

}

prevState=currentState;

if(dir==HIGH)

{

 digitalWrite(motorPin1,HIGH);

 digitalWrite(motorPin2,HIGH);

 digitalWrite(blue,LOW);

digitalWrite(red,HIGH);

}

}

Observation Table:

Sr no. Voltage Position of Shaft

1

2

3

4

5

